
J. Fluid Mech. (1987), vol. 177, p p .  35S379 

Printed in &eat Britain 

359 

The response of a stratified rapidly rotating flow to 
a pulsating topography 

By S.N.BROWN 
Department of Mathematics, University College London WClE 6BT, UK 

AND H. K. CHENG 
Department of Aerospace Engineering, University of Southern California, 

Los Angeles, CA 90089-0192, USA 

(Received 4 November 1985 and in revised form 5 May 1986) 

A theoretical study is made of the disturbance produced by an oscillating, shallow 
topographical feature in horizontal relative motion in a rapidly rotating, linearly 
stratified, unbounded fluid. For a sinusoidal surface oscillation, an explicit solution 
is obtained in terms of wavenumber spectra of the topography. The oscillating far- 
field behaviour is shown to consist of a large-scale, cyclonic component above the 
topography and a system of inertial waves behind the caustics, which spreads 
predominantly in the downstream direction. A significant property of the flow field 
is its dependence on a frequency threshold familiar from classical works on internal 
gravity waves in the absence of rotation, determined by the Brunt-Vaisala value. 
When the frequency is supercritical, a prominent circle of maximum disturbance 
appears in the far field, which provides the transition boundary between two distinct 
cyclonic structures and an upstream barrier to the propagating waves ahead of the 
obstacle. The circle has a radius depending on the relative magnitude of the pulsating 
frequency and the Brunt-Vliisiilii value, and is distinctly marked also by a phase 
jump in pressure and velocities. These features are substantiated by numerical 
examples of the full solution at a large but finite distance above the obstacle at  
supercritical frequencies. The circle of maximum disturbance signifies a preferential 
direction for energy propagation unaccounted for by group velocity. Its relation to 
the classical result of Gortler in the homogeneous case and that in the classical 
internal-gravity-wave theory are examined. 

1. Introduction 
The effects of topography on the flow field in rotating and stratified fluids are 

important aspects of both meteorology and oceanography. These effects will be 
studied in the context of a deep, rapidly rotating fluid. Many important concepts of 
geophysical fluid dynamics and their applications are concerned with quasi- 
geostrophic, hence rapidly rotating, fluid motion (Batchelor 1967 ; Pedlosky 1979 ; 
Yih 1965, 1980). This calls for a small Rossby number 9 = u,/SZ, L, where u, and 
L are a typical relative velocity and typical horizontal scale, respectively, and SZ, 
is the constant angular speed of the rotating fluid. The following analysis represents 
therefore an aspect of the asymptotic theory of low 9t flow. Of interest to the 
theoretical development are those topographical and flow configurations which can 
be modelled in laboratory experiments, so the problem will be formulated for 
obstacles with simple geometry in steady horizontal motion on the base of a deep 
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container that is rotating about a vertical axis, as in the experiments of Hide, 
Ibbetson & Lighthill (1968), Maxworthy (1977), and Heikes & Maxworthy (1982). The 
use of a deep container is important, since topographical features with scales small 
compared to  the height or depth of the atmosphere or ocean are also of geophysical 
relevance. The cited laboratory studies call attention to  departures from the familiar 
Taylor-column description a t  large distances from the obstacle, for which an inertial 
correction to  the geostrophic balance, though small, is crucial. Both theoretical and 
experimental studies (Lighthill 1967; Hide et al. 1968) suggest a slight tilt of an order 
a in the columnar structure towards downstream, although the observed flow 
patterns are expected to be greatly influenced by the fluid viscosity in these 
experiments (see analyses in Mason & Sykes 1979; Johnson 1982, and discussion in 
Stewartson & Cheng 1979). 

1 . l .  Inertial-wave patterns in a deep container 
Considering an obstacle in steady motion as a source of outgoing inertial waves, 
Lighthill (1967, 1978) has successfully applied the group-velocity/stationary-phase 
method (Lighthill 1965 ; Whitham 1973) to  the far-field analysis for both rotating and 
stratified flows. Cheng (1977) derived formally the equations for nonlinear inertial 
waves for a homogeneous fluid in a deep container as an outer problem ‘for 9 Q 1 ,  
and solved the linearized boundary-value problem for an arbitrary shallow topog- 
raphy. Cheng’s solution confirms most features noted in Lighthill’s (1967) analysis, 
except that  his lee-wave amplitude does not attenuate far downstream as required 
in Lighthill’s concept of tilting. The discrepancy (resulting from an omission of a 
constant in the stationary phase) was subsequently resolved in Cheng & Johnson 
(1982) where the far-field structure is also shown to depend strongly on the 
topographical details. The pronounced influence of the container depth was studied 
in Stewartson & Cheng (1979), which brings out a columnar, depth-dependent 
structure in addition to the quasi-random, persistent character of the lee-wave 
pattern resulting from wall reflection. The analysis shows that the effect of the depth 
H is controlled by BHIL, irrespective of the obstacle thickness, which explains the 
persistent lee-wave patterns observed in Maxworthy’s (1977) laboratory study. 

1.2. Strati$cation and the cyclonic disturbance 
An important result brought out in Lighthill’s (1967) study is the wedge-shaped 
caustic front, downstream of which the inertial waves are confined; the leading edge 
of this wedge is a vertical rising from the obstacle parallel to the rotation axis. 
Extending Lighthill’s group-velocity method, Redekopp (1975) considered the 
problem for a linear stratification in a rotating fluid, and found that the stratification 
effect is to tilt the leading edge of the caustic from the vertical towards downstream, 
with a tilting angle proportional to the Brunt-Vaisala frequency (even though the 
caustic surface itself is no longer of a wedge shape). This discovery thus furnishes a 
tilting angle more distinct than that in Lighthill’s ( 1967) homogeneous-fluid model. 
On the other hand, the result suggests that the disturbances would be swept out of 
sight along with the caustic when the stratification is high - a conclusion a t  variance 
with existing analyses which model the topographical problem in a strongly stratified 
and rapidly rotating fluid (Hogg 1973, 1978; Ingersoll 1969; Huppert 1975; Buzzi 
& Tibaldi 1977; Johnson 1978; Smith 1979a, 6 ) .  This paradox was addressed in 
Cheng, Hefazi & Brown (1984), which is hereinafter referred to as I and may be 
regarded as an extension of Cheng & Johnson (1982) to  a linearly stratified rotating 
fluid. The solution to the boundary-value problem obtained therein reveals, in 
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FIGURE 1.  (a) Illustration of coordinates and notation used in the analysis. Typical profiles of the 
obstacle/topography considered are sketched in (b )  and (c) with dashes indicating the envelope of 
the periodic surface motions. 

addition to the inertial-wave pattern, the presence of a large-scale, non-wavy, 
cyclonic disturbance for all but the homogeneous case. This cyclonic feature should 
not be too surprising at least for a strong stratification, since the horizontal stream 
function can be identified with the solution to a Neumann problem of the Laplace 
equation in this case, to which the governing equations in a certain limit corre- 
sponding to an infinite stratification reduce. This feature may be interpreted as 
having resulted from the very long waves close to the zero wavenumber, which is a 
singularity in the dispersion relation of the present problem, and hence was precluded 
by the group-velocity or saddle-point method, but may nevertheless be treated as 
an end-point contribution. The work of I is concerned with a uniform relative motion, 
and it is not a t  all clear how an unsteady motion, and a sinusoidally oscillating 
topography in particular, may affect the occurrence and the structure of the cyclonic 
disturbance. 

1.3. Periodically pulsating topography 
The present paper extends the results of I to the situation in which the moving 
obstacle corresponding to the topographical feature has, in addition to its uniform 
translation, a heaving motion in a single Fourier mode. As in I, we assume a 
Boussinesq fluid, consider a slow translation (a -+ 0) and a vanishingly small heaving 
amplitude (T+O), and shall examine the combined effect of the heaving undulation 
and stratification. A problem typical of those analysed is illustrated in the sketch in 
figure 1. 
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While the present analysis is limited to a single sinusoidal temporal mode, the result 
provides detailed knowledge of the flow response to any Fourier component in the 
frequency spectrum of an arbitrary unsteady movement of a shallow topography. Of 
interest is the response in the high- and low-frequency ranges, which should indicate, 
for instance, how rapidly or slowly the cyclonic and related features may evolve in 
a transient problem. With a suitable integration path, the solution to an initial-value 
problem may also be constructed by inverting the Fourier transform which is in fact 
proportional to the frequency response analysed here; this however is not the 
objective of the present paper. An alternative to the present analysis is to consider 
an approach by which the solution to a more general initial boundary-value problem 
can be constructed via the Duhamel integral; this has been undertaken by Hefazi 
(1985, and also in unpublished work by H. Hefazi & H. K. Cheng 1986) and applied 
to a study of the evolution processes of the anticyclonic and cyclonic patterns above 
and downstream of a compact topography, respectively. Certain outstanding features 
of the evolutionary solution numerically obtained therein can be explained by the 
results obtained below. The present analysis will also bring out several interesting 
features of periodic motion, not readily apparent from an initial-value approach ; the 
two approaches are thus complementary. 

1.4. Remarks on content 
In $2, we set out the relevant linearized equations for the shallow pulsating 
topography and proceed to construct the solution from propagating wavetrains after 
a careful selection of the proper branches from the dispersion relation. The resulting 
solution admitted by the boundary-value problem consists of two families of 
wavetrains as in I : one is made up of outgoing wavetrains with a non-attenuating 
upward-propagating component and the other is composed of the evanescent 
wavetrains which attenuate in the upward direction. By virtue of their exponentially 
high attenuation rate, evanescent wavetrains contribute little to the far field, except 
for long wavetrains corresponding to the zero wavenumber which may fall in the 
evanescent-wave range in some cases (as in I). The wavenumber origin corresponding 
to those very long waves remains a singularity of the dispersion relation for all 
frequencies; its contribution to the far field has to be specially treated. Section 3 
delineates the major far-field features of the inertial waves belonging to the outgoing 
wave family, using the stationary-phase method, and also including a novel way of 
deducing the shapes of the caustic surfaces. The contribution of the singularity a t  
the wavenumber origin unaccounted for by the stationary-phase method is treated 
in $4, where frequency-dependent, far-field disturbances in cyclonic form are brought 
out. Of significance are the major changes from a subcritical far-field behaviour when 
the forcing frequency 52 exceeds the Brunb-Viiisalii value N ,  familiar from the 
classical work on internal gravity waves without background rotation (Yih 1980, 
pp. 60-67). Particularly prominent when this frequency threshold is exceeded 
(52 > N )  is an upwardly extended conical surface which spatially divides two distinct 
cyclonic structures, and is also a caustic boundary for propagating waves ahead of 
the obstacle. Both analyses in $83 and 4 become singular at  the conical surface, and 
a transitional solution valid in the vicinity of this boundary is presented in $ 5  where 
the magnitude of the maximum far-field disturbance is established. The findings are 
substantiated by a numerical evaluation of the full solution for two supercritical 
examples; the anticipated features are clearly visible at large but finite scaled heights. 

In  passing, we recall that the presence of inertial waves ahead of the obstacle in 
an unsteady case has been noted in Redekopp’s (1975) study. Its critical dependence 
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on a frequency threshold and the existence of the circle of maximum amplitude were 
not brought out. An apparently similar, but not identical, frequency threshold for 
the inertial-wave pattern is quite well known in rotating-fluid theory for the 
homogeneous case (Gortler 1944; see Greenspan 1968, p. 10, and plate 8 ;  Yih 1980, 
p. 331) in that, when the forcing frequency 0 falls below twice that of the rotating 
container, 2 4 ,  a conical characteristic surface emanating from the oscillating source 
emerges. The two critical frequencies 0 = 2 0 ,  and 0 = N may very well represent 
the upper and lower limits for the existence of circular caustics, even though the 
threshold 0 = N found below is a result pertaining mainly to the geostrophic limit 
W+O (cf. discussion in $7) .  

2. The geometry and the equations of motion for a thin obstacle in a ’ 
container of infinite depth 

2.1. Basic theoretical model 
Except for the oscillatory bottom topography, the geometry of the situation is 
exactly that of I. We briefly rederive the equations of motion in the limit required 
here. A stably stratified inviscid fluid confined between the planes z* = 0 and 
z* = H ,  and rotating about the vertical axis with constant angular speed Q,, has a 
slow horizontal component of velocity over a topographical feature in the plane 
z* = 0. Axes Ox*y*z* rotate with the undisturbed fluid and, if the flow is taken to 
be symmetric about z* = 0, it is equivalent to assuming the presence of an obstacle 
if we take it as moving from left to right in the Ox* direction with uniform speed u,. 
A Boussinesq fluid is assumed with a linear density variation p,* when i t  is undisturbed 
in the form 

withp: the density a t  z* = 0 , c  being a positive constant. The stratification parameter 
is again as in I, namely 

where L is the horizontal length of the moving body, g the acceleration due to gravity, 
and N the Brunt-Vaisalii frequency (gs/H)f .  The present study will be concerned 
mainly with a positive 8.  

2.2. Reduced equations for an initial boundary-value problem 

We now write (x*, y*, z * )  = L(x,  y ,  2/9t) and denote the velocities in the corresponding 
directions by TU,(U,  v ,  w ) ,  the time by Ltlu,, the departure from the equilibrium 
pressure by ~ p t  0, u, Lzj.5 and from the equilibrium density by TeLp,*p/H. Here T is 
a measure of the maximum amplitude of the pulsating body and W (= u,/0,  L )  the 
Rossby number. If the equations of motion are non-dimensionalized and it is assumed 
that both T 6 1 and W < 1 then the linear system (Cheng 1977; Stewartson & 
Cheng 1979) 

aj.5 aj.5 aw 
ax aY az at 

-2v+-  = 0, 2u+- = 0, -+-+eP = 0, 
12.3) 
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is obtained. The boundary Condition on the moving obstacle whose equation is 
2 = ZJx-t, y, t )  may be transferred to the plane z“ = 0 as 

a 
w = --Z,(x-t, y, t )  on 2 = 0. (2-4) at 

Upon setting x’=x-t ,  &=lz“, 2 g=-;g (2.5) 

we recover the equation 

with 

exactly as in I. The coordinates (x‘, y, 2) move with the body, and in order to  obtain 
(2.6) and (2.7) an operator a/at on the left-hand side of each equation has been 
suppressed on the assumption that (2.6) and (2.7) hold at t = 0. We shall now take 
W H / L  to  be infinite and replace the boundary condition on the upper plane by the 
requirement that  @ + 0 as x ‘ ~  + y2 + .Z2 + 00 and that there are only outgoing waves 
in the far field. To complete the problem formulation, appropriate initial condition 
data (e.g. initial data of and a@/at)  must be prescribed, which are unnecessary in 
the following analysis of the frequency response. 

2.3. The frequency response: solution to a boundary-value problem 

In addition to its motion from left to right, we shall assume that the body is also 
heaving in a single Fourier mode so that 

where the real part of the final result is to be taken. Note that p is related to the 
physical radian frequency Jz  by p = B-lQ/Q,. 

The solution of (2.6) subject to (2.7) may be written down at once in the form 
a+b = eipt with 

1c. = J-1 Jpco h(w ,a )  exp{i[wx’+ay+((w-p)2-O): (w2+a2)&])doda, (2.9) 
- 

co 

where h(w, a) = i ( 2 ~ ) ~ F ( w ,  a ) ( ( w - p ) 2 - @  ( d + a 2 ) - - ! ,  (2.10) 

and F(w, a) is the double Fourier transform of Z,(x’, y)  so that 

F(w, a) = 1” 1“ z,(z’, y) e-iws’-iuY dx’ dy. (2.11) 
J-w J-a0 

In (2.9) and (2.10), ( w 2 + a 2 ) +  is the positive square root of the positive quantity, and 
the sign of ( ( ~ - p ) ~ - 6 ) :  is to be chosen so that 3 remains bounded as 2+ co, and 
so that there are only outgoing waves for 2 4 1. Two ways of looking at this, which 
both lead to the same result when p = 0, are either to  consider the present problem 
as the long-time limit of an initial-value problem with Laplace transform parameter 
s or to use group-velocity arguments. With p + 0 we may either choose the correct 
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root with s real and positive and set s = ip on completion, or we may simply choose 
the root which reduces to that of I as p+O. In either case we obtain 

( ( o - p ) 2 - e ) f  = kl(@-p)2-ep if W - p  > e:, 
or o - p  -= -Of ,  when Iw-pI > 04; ( 2 . 1 2 ~ )  

((o-p)2-O)f = il(w-p)2-O)?, when I(o-pI < 8: (2.12b) 

The ranges of w in ( 2 . 1 2 ~ )  give an oscillatory contribution to (2.9) which represents 
the outgoing inertial waves, while those in (2.12b) give a contribution to the integral 
that decays exponentially with 2. We note that in the case of a finite depth 
( W H / L  + a), other roots of the dispersion relation, including exponentially growing 
components must be allowed to account adequately for the reflection from the upper 
boundary. t 

2.4. Preliminary remarks on the far-field analysis : anticipated results 
In the following sections we discuss the far-field asymptotics of 3 in (2.9) by 
examining the leading terms of its asymptotic expansion for large 2. The integral (2.9) 
for large 2 has contributions not only from the stationary phase but also from the 
wavenumber origin, where the phase is singular and which must be separately 
treated. These two types of contribution are analysed in $$3 and 4 where special 
attention will be paid to the critical changes in the far-field structure brought about 
by the relative magnitude of p and Of.  The far-field study is completed in $5 where 
the non-uniformity of the results in $13 and 4 at the circular boundary in the 
supercritical case is treated and the magnitude of the maximum disturbance is 
established. 

We shall find that the dominant contributions come from the saddle points for 
lo-pl > O!, for those values of x'/2, y /2  for which they exist, and from the origin 
CT = 0 = w .  With the saddle points is associated a caustic within which the resulting 
lee waves are confined, while the singularity a t  the origin gives rise to a cyclonic 
disturbance comparable with, but clearly distinguishable from, that noted in 1. The 
lee waves decay as 2-' except in the neighbourhood of the caustic where the decay 
rises to O(2-i). The situation p < O i  is very like that of I (corresponding to p = 0) 
except that now the caustic curve has two branches (though i t  is unlikely that they 
could be differentiated in a numerical evaluation of (2.9) for finite 2).  When p > 8: 
it emerges that the lee waves are present ahead of the obstacle, specifically in a circle 
of radius proportional to (p2-O)t2, in the neighbourhood of which the decay is O(i - f ) ,  
except for two symmetrically placed points near which the disturbance increases to 
O(2-i). The reason for the occurrence of this additional feature of interest is the 
coincidence of the wavenumber origin and a saddle point that can occur when p > Of 
as may be seen from (2 .12~) .  

The anticipated results in $$3, 4 and 5 clearly establish the significance of the 
critical condition p = Of,  which can be written more explicitly as the frequency 
threshold: i2 = N ,  independent of 52, and W. 

t As in most existing theories of hydrodynamic instability, the assumption of a bounded 3 at 
O+ m does not preclude the possibility of a spatial instability in the downstream (2') direction. 
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3. The saddle-point contributions to the far field 
3.1. Identi$cation of physical domains of inertial wave8 

It was found in I that with p = 0 the integrand of (2 .9)  has four real pairs of values 
of w ,  cr for which the function w g  + cr 8+ (w2 - 8)t (w2 + a2)t is stationary, in a certain 
region of the (a, 8)-plane. Here x’ = xi, y = p i .  When p = 0 this region is 
8p2 < g2-88, < 0, the boundary of which forms a caustic. At large 1, and 
correspondingly large x’, y ,  all oscillatory disturbances are confined to this region, 
which in three-dimensional space is bounded by a conical surface with its vertex a t  
the origin. All such disturbances are behind the body and in particular when 8 = 0, 
the homogeneous situation, the resulting pattern for these gravity waves is 
reminiscent of that  of Kelvin ship waves. Inside the caustic the four real values of 
w are fw , ,  f w Z ,  and on the caustic w, = w2. With p =k 0 we shall find that the 
situation is somewhat different. I n  the (x, p)-plane the caustic now has two branches. 
Inside the inner branch, again for 2 < 0, there are four real values of w - p  with 
corresponding u, two of which are negative and two positive. The two positive values 
of w - p  coincide on the inner branch and then become complex. The two negative 
values remain real until the outer branch is reached. An additional point of interest 
is that, for values of p > &, of the two negative values of w - p  one exists for < 0 
inside the circle 13”+ p2 = p 2 - 8  and the other for 13 > 0. This means that for 
sufficiently large p the pulsating body generates a certain amount of oscillatory 
upstream influence at large 2 .  

To examine the saddle points of the integrand of (2.9) we set 

(3.1 a )  

(3 . lb )  

and examine the stationary points of the function 

@(a,@) = G X + @ Y +  ((0- 1)Z -a ) :  (O2+a):, (3-2)  

where, from (2.12), 

( ( ~ - i ) 2 - 0 ) :  = f l ( W - i ) 2 - 8 l i  ifW-1 > 73, 

or 55-1 < -@) when 155-11 > 84; (3.3a) 

(3.3b) 

At the stationary points a @ / a W  = 0 = a@/a3 so that, for W, @ to  be real they are in 
the ranges IW- 11 > 8: of ( 3 . 3 ~ ) .  From (3.2) we obtain, on differentiating, 

((w- 1 ) z - B ) :  = il(W- l ) 2 - B l ~ ,  when IW- 11 < Bt. 

255’ - 355’ + W( 1 -8) +F2(Tj- 1) 
O = x+ ( 7 3 2 + 3 2 ) : ( ( & 1 ) 2 4 ) t  ’ ( 3 . 4 4  

3((55- 1)Z-B): 
(552 + 3 2 ) i  * 

o =  Y +  

If we eliminate 3 from (3 .4)  and set 
- 
w =  1 + A ,  
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we find that A satisfies the quartic 

XyA2-8- Y2) = (2A2+2A-8- P ) 2 ,  

which may be rewritten as 

4A4 + 4A3 + (1 - 4T2 - X 2 )  A2 - 2AF +T2(F + X 2 )  = 0, (3.7) 

where Y = (P+@ > 0. (3.8) 
- 

Descartes' rule of signs tells us that (3.7) cannot have more than two positive roots 
for A = W- 1 or more than two negative roots. Indeed from (3.6) we see that all real 
roots have JAl > 7. That for (3.7) a caustic exists is indicated by the fact that for 
sufficiently large X and bounded 7 there are four real roots, namely 

Ax *-T, A x  ++x, (3.9) 

but for sufficiently large 7 and bounded X the four roots are 
- 
V 

(3.10) 

for all combinations of the signs. Thus the oscillatory disturbance will be confined 
to some region of the (X,P)-plane for which 7 is bounded if X is bounded. To find 
the boundary of the region which contains the oscillatory disturbance we must first 
find the equation of the caustic. 

3.2. Generating two branches of the caustic 
To find the caustic curve we eliminate A between (3.7) and the equation obtained by 
differentiating it with respect to A. After some algebra we obtain 

(1 + 8T2 - X 2 )  ( 4 7  + X 2  - 1)' = 3 F (  1 + 8 F  + 5 X 2 )  (8-T' - X2 -5 ) ,  (3.11) 

and that on the caustic A = A, where 

and 

(3.12a) 

(3.12b) 

The above equations allow a novel way of generating the caustic surface of interest. 
We first discuss the curve (3.11) in the case of the homogeneous limit 8 = 0, and 

then to obtain the curve for 8 =I= 0 we rotate the curve for B = 0 around the X-axis 
to obtain a body of revolution in (X, Y,Z)-space and cut this body with the plane 
Z = 8;. This intersection gives the required curve. The advantage of this is that for 
0 = 0 we are able to consider a variable Y that can take the value zero. 

The properties of (3.11) with a = 0 and 7 = P follow easily. If we write it as 

64Y6+48(X2-1) Y4-3(5X2+ 1)(X2+5) Y2+(X2-l)3 = 0, (3.13) 

it  can be shown that this equation always has three real roots for P, and that if 
X 2  < 1 only one of these is positive, and that if X 2  > 1 two of them are positive. 
Thus the caustic, which is clearly symmetric about Y = 0, has two branches if X2 > 1 
and one if X2 < 1. Near the point A, in figure 2(a)  the curve is parabolic with 
Y -  1 N +Xa, and near the point B, it has the form of a semi-cubical parabola with 
2 7 P  - 2(IX(- l)3. From (3.11) we see that the curve has the lines 8 Y 2  = X 2  as 

- 
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f 

FIQURE 2. Sketch of the far-field caustic for (a )  8 = 0, ( b )  0 < 8 < 1, (c) 8 = 1 and (d )  8 > 1 .  In 
(a) the circle has radius unity, and in ( b )  (1  -a)$. Refer to definitions of 8, X and 7 given in (3.1). 

asymptotes but never crosses these lines. Indeed neither does it cross the hyperbola 
8 y2 - X2 = 5 ,  so that 8 Y2 - X2 - 5 > 0 on the upper branch (through the point A,)  
and is < O  on the lower branch (through the point Bl) .  It therefore follows from 
(3.12a, 6 )  that A, > 0 on the lower branch and A, < 0 on the upper branch. Thus the 
two positive roots of (3.7) coincide on the lower branch but the two negative roots 
survive as real roots until the upper branch is attained. The curve is sketched for 
X < 0 and Y 2 0 in figure 2 (a) ,  together with the semicircle X2 + Y2 = 1, the reason 
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for which is explained below. Sketched also in figure 2 (b, c, d )  are the curves obtained 
by rotating those in figure 2(a)  about the X-axis and cutting the resulting body of 
revolution with the plane 2 = Bt.  In  figure 2 (b), 8 < 1 and the semicircle has radius 
(1 -@ and the curves apart from the circle make up the caustic; near the point A,, 
y2 - 1 - B + i X 2  and the position of the point B, is obtained, if required, by solving 
- (3.13) for X with y2 = B. For example, if 8 -4 1, B, is { - 1 -3(28):, O}. In figure 2 (c), 
8 = 1 and the branch of the curve through the origin has slope 3-f there; the point 
B, is ( - 3f, - 6;, 0). In figure 2 (d), 8 > 1 and if, for example, 8 %- 1, the points A,, B, 
are (-2@e?&3;,0) respectively. In figure 2(d), the point A, may be regarded as 
defining the tilting angle of the caustic. In  the limit 8-t 00 the result, X N -2%8:, is 
exactly that of Redekopp (1975) for the steadily moving obstacle. 

3.3. Presence of inertial waves ahead of the obstacle for 8 < 1 

We now explain the significance of the semicircles in figure 2(a, b) and show that, 
apart from the region interior to this circle, there are no real roots for A = 0- 1 with 
X > 0. First, it follows from (3.4) and (3.3) that 

(3.14) 

where we have made use of the fact that the real roots of (3.6) have A2 > F. It is 
clear from (3.14) that X < 0 when A > 0, so that the positive roots inside the lower 
branch of the caustic are applicable only behind the body. The same statement is 
true for the negative roots if A ( l  + A )  > 0. If, however, - 1 < A < 0 and also 
A( 1 + A )  + h2 -F > 0, it is possible for X > 0. This can be illustrated with relative 
ease by considering the roots of (3.7) when 8 = 0 and I YI -4 1.  

A thorough examination on the existence of real roots for A in various regions of 
the caustic behind the semicircle X2 + y2 = 1 -B is presented in the Appendix. We 
summarize the results as follows : (3.7) subject to (3.14) has four real values of A below 
the lower branch of the caustic when X < 0, two (negative) values of A between the 
two branches of the caustic if X 2 + y 2  2 1 and X < 0, and one (negative) value of 
A in X 2 + p  < 1 both for X positive and X negative. Thus for sufficiently large p, 
i.e. B < 1 or Q > N ,  some of the ‘lee waves’ are present upstream of the obstacle. 

3.4. Stationury-phase result 

In the regions away from the caustic curves and the circle X2+ y2 = 1-8 the 
contributions from the saddle points to (2.9) may be written in the usual way. In 
the variables defined by (3.1), (2.9) becomes 

xexp{i[TSX+3Y+((o-l)2-8): (G2+F)f]p2i}dWdT?. (3.15) 

To evaluate the contribution from a particular saddle point we need the value of the 
discriminant which, with @ as defined in (3.2), is calculated after some algebra to be 

(3.16) 

at any value of A(  = W- 1) and corresponding 3 for which @ is stationary. It is not 
difficult to show that the expression in the square brackets vanishes on the caustic 
curve when A = A,. A typical contribution qS from a saddle point to the integral in 
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(3.15) is of the form, written here for a saddle point A = A, with A, > 0, a negative 
discriminant and a positive value of a2@/aB2, 

where w, = l+h,, go is to be calculated from (3.4b), and @ is defined in (3.2). The 
sum of such contributions must be taken. Far downstream, where Y / ( X (  -4 1, the 
dominant wave is derived from (3.17) as 

(3.18) 

which is exactly of the form obtained in I for p = 0 and also by Cheng & Johnson 
(1982) for a homogeneous fluid. It exhibits the same decay as the Fourier transform 
of the obstacle shape does with w ,  c. 

The treatment of the caustic region is standard, see for example I, Cheng (1977) 
or Cheng & Johnson (1982), and will not be included in detail here. The result is that 
there is a caustic region of width O(2-5) surrounding both branches of the caustic curve 
and that the contribution of these regions to the asymptotic expansion of (3.15) is 
O(2-e). This contribution is described by an Airy function as expected and exhibits 
exponential decay upstream away from the caustic and oscillatory decay into the 
region bounded by the caustic curves. 

The integral (3.15) has also for large 2, in addition to the oscillatory saddle-point 
contributions, a non-oscillatory algebraically decaying contribution that is also 
O(2-l). In the next section, we calculate this contribution, which is valid both 
upstream and downstream of the caustic, and show that it is singular on the circle 
X 2 + F  = 1. 

4. The far-field cyclonic disturbance 
The origin W = 3 = 0 gives a contribution to the integral (3.15) that is of the same 

order of magnitude, 0(2-l), as that due to the saddle points to which it must be added 
in the region downstream of the caustic, and is, by itself, the largest contribution 
upstream of the caustic. In an initial-value problem this cyclonic pattern asserts itself 
before the lee-wave pattern is established because, as shown by Hefazi (1985), it is 
the low wavenumbers that dominate at  small values of the time. 

When 8 > 1 this contribution to (3.15) is non-singular, because the origin falls in 
the evanescent domain and is therefore not a possible position of a saddle (stationary) 
point (as they occur for W > 1 +8 and G < 1-8 only). Thus there is no coincidence 
of saddle point and the phase singularity at  the origin. We define 

Then, since the dominant contribution comes from the neighbourhood of the origin, 
when 2 % 1 ,  

exp {[EX+ i 3  Y - (8- 1): (W2 +?P)i]p22} dG d3, (4.2) 
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which, after a change to polar coordinates in the (G,iY)-plane, may therefore be 
evaluated as an end-point contribution, yielding 

2 9 1. (4-3) 
- V +- -  2x1[1+ (XZ+ Y2)/(8- l)]i’ 

Thus as was the case in I with p = 0 we have an algebraically decaying cyclonic 
disturbance that is symmetric about the &axis and, unlike the lee waves contributed 
by the saddle points, has no bias in the downstream direction. 

When 8 < 1, instead of (4.2) we have 

m - i Vp2 
exp (i[TjX+iYY - (1 -B)+ (Tj2  + 3 ) i ] p z 2 }  d 6  diF, (4.4) 

which although falling in the propagating-wave range cannot be treated by the 
saddle-point method. Again, it can easily be evaluated as an end-point contribution 
after changing to the polar coordinates as, when 2 9 1, 

X2+Y2>1-B, 
- iV 
+ - -2&[(x2+ P)/(l-B)-l)]i’ 

F + P < l - B .  - V + - -  27c2[1- (XZ+ y2)/(1 -a)$’ 

( 4 . 5 ~ )  

(4.5b) 

Thus the magnitudes of pressure and velocity perturbations amplify as the circle 
X2 +P2 = 1 -B is approached, while the (instantaneous) streamlines would make 
- sharp turns in crossing the circle owing to the phase jump shown in (4.5). When 
0 = 1 i t  may be shown that the contribution analogous to (4.5) is O(2-i) instead of 
O(2-1). 

When B < 1 (i.e. SZ > N) the singularity in the neighbourhood of the circle 
X 2 +  y2 = 1-8 leads to a disturbance of larger magnitude 0(2-:), rather than O(2-l). 
This neighbourhood is identified by 

x2+ Y2 = ( l - B ) [ l + O ( p - ’ 2 f ) ] .  

As this disturbance represents the largest magnitude in the far field, we examine its 
analytic form in the following section. 

5. The dominant contribution to the far fields in the supercritical case 
When 0 < B < 1, the largest contribution, 0(2-:), to the far-field disturbance is, 

as we shall now demonstrate, concentrated in the neighbourhood of the circle 
X2 + Y2 = 1 -B and is associated with both types of asymptotic behaviour so far 
discussed, the ‘lee waves’ of 93 and the cyclonic disturbance of $4. It is evident from 
(4.5) that the cyclonic disturbance becomes singular on the boundary of the circle 
and we recall from $3 that one of the saddle points of (3.15) responsible for the lee 
waves is transferred from a position behind the body to one in front of it, as this circle 
is entered from the outside. This is the saddle point associated with the root A,,  of 
(3.71. In the region where 
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both effects are of the same size and the resulting disturbance in this neighbourhood 
arises from a coincidence of the saddle point with A, = - 1 and of the origin in the 
(W, ??)-plane. 

We first discuss the form that 3 must take as IQI + 00 in order that the solution 
where IQI = O(1) may match with the.solutions already obtained inside and outside 
the circle. Apart from the neighbourhoods of the caustic curves, where it rises to 
O ( 2 3 ) ,  the disturbance is O(2-') and is obtained by adding the contribution from (4.5) 
to that from the saddle points as exemplified by (3.17). The expression for 3 that 
we obtain when Q = O(1) must have the following properties. If X < 0, then as 
Q+ 00, $ must contain two oscillatory lee-wave components (corresponding to both 
roots A,, A,) and an algebraic cyclonic component; when Q+- 0 0 , $  must contain 
one oscillatory component (that corresponding to the - root A, only) in addition to the 
algebraic component. If X > 0, then as Q+ 00, $ must contain an algebraic 
component only, though as Q+- 00 it must also contain the appropriate oscillatory 
component derived from the root A,. 

These matching requirements are obtained by letting A+- 1 in the expression 
(3.16) for the discriminant and calculating the limiting form of the saddle-point 
contribution as X2+ y2+ 1 -B. With the addition of the algebraic contributions 
calculated from (4.5) we obtain the requirements that if X < 0 then 

+$,, a s Q + a ,  (5 .24  
- Vp? exp [ - i( 1 -8)2Q] i Vpi $.-- - 

&:Q: 16X 2x2tQ: 

(5.2b) 

where $, is the oscillatory contribution from the root A,, which remains O(2-l) 
throughout the circle for X < 0 and does not occur if X > 0. If X > 0 

(5.3a) 

asQ-t-cm. (5.3b) 
- $.-- i Vpi exp [ - i( 1 -8)'QI - Vpi 

n2flQli 16X 27~2fQ? ' 

To obtain the form of 37 when Q = O(1) and 2 3 1 that has the properties (5.2) and 
(5.3) we find that it is sufficient to consider (3.15) as 

(5.4) 

on setting W = r cos #,a = r sin 4 and giving the multiplier in front of the exponential 
its value at W = 0. We are interested in small values of r with Q = O( 1) and we denote 
the exponent in the integrand in (5.4) by ip22K(r, 4). Now 

and upon setting 

r(l-B$ = r,, x = X,(I -B)i, Y = ~ , ( i  -a);,] 
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we consider, from (5.4), 

- $--  ivp2(1-BP 2x2 JoK J: exp[ir,(R, cosq5,-l)p2i]dr,dq5,, (5.7) 

where q5, is related to q5 by an origin shift and the terms O(r3) in K(r,  q5) have been 
ignored. When X; + q = 1 the integrand in (5.7) has its saddle point at r1 = 0, q5, = 0 
and when X:+ q = l+Qp-W; the saddle point is at dl = O(z-'), 
rl = - (1 -B)tQ/(4pX1 i t ) ,  which is in agreement with our earlier findings that the 
saddle point whose position tends to X:+ = 1 as A,+-- 1 exists outside the circle 
if X, < 0, and inside if X, > 0. In (5.7) we expand the integrand for small r,, q5,, 
retain the dominant terms and write 

This leads to 

vQ) +s: X,( 1 - B ) - t ] }  d$ds,, (5.9) 

where v = (1 -B)t/(4X1), and (5.9) may be reduced to the single integral 

(5.10) 

This gives the asymptotic form of (3.15) for large i in the region where Q = O(1). 
That (5.10) takes the required forms (5.2) and (5.3) as IQI + 00 for X < 0 and X > 0 

respectively may be shown by finding its asymptotic expansions as Q+ & 00. If 
IQI 9 1 and QX,  < 0 the saddle point at the origin lies in the range of integration 
and gives a contribution in addition to that from the end point s = vQ. Together these 
give (apart from q5, which is O ( i - l ) )  exactly ( 5 . 2 ~ )  and (5.3b). However if IQI % 1 and 
QX, > 0 the saddle point lies outside the range of integration and we obtain (5.2b) 
and ( 5 . 3 ~ ) .  Thus the maximum strength of 3 around the circle is theoretically 
established as O(i- f ) ,  which is of an order lower than that in the caustic transition 
zone, O(i-0). 

In  fact the largest contribution to  3 in (3.15) comes from the neighbourhood of 
the points A,, A, in figures 2(a, b).  Since these points are at the junction of the circle 
and the caustic, this is not surprising. Near A,, A, where - 1 and 1x1 Q 1 it is 
necessary to retain the terms O(r3) in (5.5). In the case B = 0 for example, we have, 
from (5.7), to replace (5.9), 

(5.11) 

which gives a contribution 0(.2-$) in a region where P- 1 = O(i-g), 1x1 = O(i-i).  

6. Examples 
It is the appearance of a circle of maximum amplitude, along with a phase jump, 

that may be considered as the outstanding feature distinguishing the far field of the 
supercritical case. To illustrate their occurrence for a particular topography, the 
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FIGURE 3. Horizontal streamline patterns above the profile z, = (1 +d8 +Y*)-~ at a reduced height 
2 = 2.0 and a reduced frequency p = 5.0 for (a) 8 = 0 and (b) 8 = 0.2. The value of 7 is 0.25 in each 
case and that of pt is 2rr. In  (a) the circle has radius unity, and in (b) 2/54. 

instantaneous streamlines have been calculated from (4.2) for flow past the profile 
- 
Z,(x’, y) = (1  +x’2+y2)-2, 

when it is regarded as stationary with respect to the (x’, y)-coordinates. The method 
of computation was that of a fast-Fourier-transform algorithm as used in I. For 
illustration, two values of e corresponding to the supercritical cases were taken, 
namely B = 0 and 8 = 0.2, both with p = 5 and 2 = 2. The results for a value 7 = 0.25 
of the non-dimensional thickness ratio are presented in figure 3 (a ,  b )  for the instant 
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when pt is a multiple of 2x .  In  I, the same profile (6.1) was considered with p = 0 
and 2 = 0.5, in which case the cyclonic disturbance was clearly visible in the 
streamline pattern. Here 2 is fourfold greater and the only remaining visible 
perturbation is the largest that occurs, namely that in the neighbourhood of the 
boundary of the circle X2 + y2 = 1-8, which is O ( 2 2 )  according to $5. In  both figures 
the appropriate circle is shown by a dotted line (not quite circular as the X -  and 
Y-scales differ slightly). As predicted, the oscillatory disturbance is concentrated on 
the inside of the boundary for X > 0 (i.e. ahead of the body) and on the outside for 
X < 0. However, at this value of 2, the pattern is still somewhat downstream of its 
final asymptotic position though, in particular in figure 3 (b), it is possible to detect 
the increase in amplitude, to O(2-;), in the neighbourhood of the points whose 
asymptotic positions will be X = 0, Y = f (1 -@ corresponding to A, in figure 2 (b). 
The ‘lee waves’ bounded by the outer caustic of $3 but downstream of the circle are 
too weak in this case to be detected at  this height. 

7. Discussion 
We have analysed the effect of surface undulation on the flow field about an 

obstacle in uniform motion at  the base of a deep, rapidly rotating container, in which 
the fluid is linearly stratified. The problem, linearized for a thin obstacle 
corresponding to a shallow topography, has been solved for a single sinusoidal 
temporal mode eipt for an arbitrary p, furnishing therefore the frequency response 
to a Fourier component in the frequency spectrum of a more general unsteady motion, 
as permitted by the requirements T << 1 and p = O( 1). In  this sense, the restriction 
to a sinusoidal oscillation may find its relevance. The results and extension of this 
study have merit in their own right, as will be discussed further below. 

7.1. Frequency threshold 
The result of I for the steady case ( p  = 0) has shown that, except in the homogeneous 
limit (8 = 0), a large-scale, solitary, and symmetrically distributed cyclonic distur- 
bance is generally present in the far field and hence coexists with the ship-wave like 
pattern of the more familiar inertial lee waves. For unsteady motions ( p  4 0), the 
analysis of $$3 and 4 shows that the solitary cyclonic feature is present for all degrees 
of stratification with no exception (including the homogeneous limit 8 = 0), but the 
far-field pattern is found to depend critically on the relative magnitude of the 
pulsating and Brunt-Vaisala frequencies, i.e. on e = 8 /p2  = ( N / Q ) , .  More significant 
perhaps are the existence of a threshold frequency at  52 = N which is independent 
of the background rotation, and the ‘circle of maximum disturbance’ with accom- 
panying features in both the cyclonic and the wave patterns at a supercritical 
frequency (Q > N). Whereas a frequency threshold also exists in the classical theory 
of internal gravity waves (Yih 1980, pp. 60-67), its occurrence at the same N under 
a strong Coriolis influence may seem rather surprising. 

7.2. Lee waves and caustics 
Unlike the steady case, two (inner and outer) branches of far-field caustics are found, 
within and downstream of which the familiar inertial waves are confined. Two more 
branches, forming the two halves of a full circle (a conical surface with circular 
cross-section, to be more precise) must however be added in the supercritical case. 
In spite of this complication, the variety of caustic geometries is recognized to be 
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related simply to those in the homogeneous limit. While it is apparent that the 
circular caustic forms an upstream barrier for propagating wavetrains ahead (and 
above) of the obstacle, the presence of the upstream ‘lee waves’ can be confirmed 
only if their existence is established from the solution; this has been accomplished 
at the end of $3. 

7.3. Cyclonic disturbance as large-scale feature 

As noted, the stationary-phase method applied in $3 precludes the contribution of 
the singularities of the phase, particularly that at  the wavenumber origin o = a = 0. 
Its contribution to the pressure is determined in $4 to yield a large-scale cyclonic 
pattern of disturbance, with a magnitude generally of the order 2-l, the same as that 
describing the inertial lee-wave system, when 8 = O(1). This cyclonic feature could 
have been anticipated by consideration of the solution to the governing equations 
(2.6) and (2.7) for horizontal scales much longer than that required by the inertial 
lee waves. In this case, the convective derivative a / a d  in (a/at-a/as’)z becomes 
unimportant and the second term in the inner boundary conditions (2.7) can be 
replaced by a double delta function in the (x’, y)-plane. Specializing to a Fourier 
temporal mode, (2.6) and (2.7) may then be simplified to 

( 7 . 1 ~ )  

(7.lb) 

which, for an algebraically decaying $ at large distances, yield (4.3) and ( 4 . 5 ~ ~  b). 
Note that both real and imaginary values of 3 must be included in evaluating the real 
part of $ = 3 eipt. On the other hand, to produce the ship-wave-like inertial wave 
pattern of $4, the relative scales among the time and horizontal scales must remain 
the same as for the lower altitude, and hence the contribution from a/ad in 
(i3/at-a/az’)2 of (2.6) and (2.7) cannot be omitted; this gives a bias in the downstream 
direction, leading to the closely packed lee-wave pattern. The same consideration can 
also be used to explain the reduction to the Laplace equation in the work of Hogg 
(1973,1980), Ingersoll(l969) and others mentioned earlier, for whichp in (7.1) iszero. 

7.4. Prominent far-field features : subcritical case 

At a subcritical frequency (Q < N), the most dominant feature in the far field is the 
cyclonic mode (4.3) which is made prominent by the peak of its extensive solitary 
distribution at X = Y = 0, even though its magnitude in I1c.l ranks the same as that 
of the lee waves, namely 0(2-l), and theoretically ranks second to the accumulated 
strength in the caustic-transition zone O(2-i). The dominance of the cyclonic 
component is greatly enhanced by a relatively high 8 (see (4.3)) while the lee waves 
and its accumulated strength over the caustic boundary are greatly diminished by 
an increased 8, owing to the dependence on F(o, a) and the increases of the stationary 
values of o and a with 6 as 84, as explained in I for the non-oscillatory case p = 0. 
Even for 8 as low as unity, the maximum strength of 3 a t  height 2 = 5 is still found 
at the peak X = Y = 0 of the cyclonic component when p = 0 (cf. figure 4 in I). 

7.5. Prominent far-field features : supercritical case 
In  the supercritical case (Q > N), the largest magnitude of /$I in the far field occurs 
unquestionably in the vicinity of the circle X2+ y2 = (l-B),  and is established to 
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be O(12) in (5.9) in $5; its prominence should be considered a field property of the 
cyclonic disturbance although it also serves as a barrier to the ‘upstream lee waves’. 
The strength of this ring of maximum disturbance reaches the peak at the juncture 
where the outer caustic joins the circle (cf. figures 2a, b) and the magnitude of 3 is 
shown to further increase to O(4-8) in (5.11). The examination of the examples from 
two numerical solutions to the full solution at  finite heights made in $6 leaves little 
doubt of the presence of the features brought out by the asymptotic analysis. 

7.6. Relation to Ciirtler’s studies 
As noted in $ 1, Gortler (1944, 1957) found a frequency threshold in his studies of a 
periodic disturbance in a homogeneous rotating fluid, for which a linearized equation 
very similar to ( 7 . 1 ~ )  is applicable, except that, formally, (O-p2) is replaced by 
[l -4(4,/4)2]. Thus the equation therein is hyperbolic in its spatial dependence for 
4 < 24,, with the emergence of the characteristic surface 

as noted in Greenspan (1968). Although 4 = 24, is far beyond the range of 4 
considered here for p = 4/4, W = O( l),  one surmises that N and 28, could remain 
as the two threshold frequencies even in a non-geostrophic domain (W =+ 0). This 
expectation is encouraged by the agreement of (7.2) with the characteristic surface 
of the solution (4.5a, b), for e + O  under 4/4, = pW Q 1. 

7.7 Departure f r m  geoetrophy 
In  order to answer adequately the question on frequency thresholds for a non- 
vanishing W, a relaxation from geostrophy in the formulation is necessary. A 
linearized analysis for this obstacle may then be made for finite W ,  8 = (N/4)2, and 
4/4,, and will shed light on this question. 

The extension to a non-vanishing W is an interesting one in as much as it may be 
shown that the frequency cut-off for the propagating wavetrains will occur not only 
at w = p f &  a8 in ( 2 . 1 2 ~ )  but also at w = pk2W-l (e.g. Hefazi 1985). The condition 

W = 28-t, i.e. N = 24, (7.3) 

is then seen to be more critical than the frequency threshold. For W < 2&:, 
wavetrains with upward-propagating components cover two ranges of w in (2.1 1 )  ; 
as W-+28-4, the windows for these two wavetrains vanish, leaving the large-scale, 
cyclonic disturbance to be the only major feature in the far field (for all p);  when 
W exceeds 28-4, windows for the upward-propagating waves reopen. From this and 
a consideration of (2.6) generalized to W 8 0 for the large-scale disturbance, one may 
readily infer the condition for the appearance of the circle of maximum disturbance 
to be 

8; < p < 219, if w < 2 8 3  

2/91 < p < el, if W =- 28-4 

which are equivalent to 

I N < 4 < 2 4 ,  ifN<252,, 

24, < 4 < N if 24, < N. 
(7.4) 
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Thus N and 252, are indeed the frequency thresholds for the supercritical flow 
structure, for all W ,  irrespective of whether N @ 252,. 

The foregoing discussion on the frequency thresholds does not however indicate 
a complete independence of the solution of the Rossby number, which controls the 
convective inertial influence. To determine correctly some of the important flow 
details, as well as establishing more firmly the foregoing conclusion, a thorough 
analysis with W $: 0 parallel to $13, 4, 5 should yield results of both theoretical and 
practical interest. In  particular, the drag and side force affecting the overall 
momentum and energy balances in the present problem will be decisively controlled 
by the 0; and W which, together with p ,  determine the window for the outward- 
propagating waves, and hence the rate of radiation loss. As noted earlier, the outgoing 
waves disappear when 8tW = N / Q ,  = 2 and the drag vanishes, as has been 
substantiated by an analysis for W $: 0 in the steady case (Hefazi 1985). How a 
periodic cyclonic motion may affect the far-field energy balance at W = 2 8 4  and 
other W is not altogether clear. 

The presence of the circle of maximum disturbance implies a directional preference 
in the propagation of the inertial-baroclinic waves at a supercritical frequency. The 
results established in $14 and 5 could help in estimating the geophysical influence 
on oceanic data gathered through remote sensing. To be useful, however, it is again 
essential to extend the analysis to a non-vanishing W, in as much as the length and 
time scales required by W 4 1 for geostrophy may be too large to be meaningful in 
an atmospheric application. 

Apart from its limitation due to a small W ,  the present theory has also omitted 
the important Ekman pumping and a variety of viscous phenomena in rotating flows 
(see Greenspan 1968). Of great consequence is the possibility of wake generation from 
the Taylor column above and close to an obstacle, such as a (shallow) truncated 
cylinder or a (thin) spherical cap. The experimental and theoretical evidence of its 
occurrence have been brought out in Boyer (1970) and Walker & Stewartson (1974), 
and are also discussed in Stewartson & Cheng (1979). 

The authors are grateful to Dr H. Hefazi for his help in the numerical inversion 
from which figure 3(a, b)  was derived. This research was supported by the United 
States National Science Foundation Engineering Division, Fluid Mechanics Program 
under grant number NSF MEA-82-17-835. 

Appendix. Upstream ‘lee waves ’ for 0 d 8 < 1 

We now show the existence of ‘lee waves’ for 0 < 8 <  1 inside the circle 
P+ I“- = 1 -8 both for positive and negative X. Let A,, A, be the two negative roots 
of (3.7) and first note, from (3.6), since A2 2 p, that if 7 > 1, but is inside the outer 
branch of the caustic so that A,, A, are still real, then A,, A, < - 1  and X in (3.13) 
is negative. It may be argued from (3.7) that one root, A, say, takes the value - 1  
on X z + p  = 1, inside the circle both A,, A, > - 1 ,  and outside the circle except for 
y2 < 1 ,  we have A, < - 1 and A, > - 1 ,  with A, = - 1 o n P  = 1.  F o r 7  d 1, the roots 
are equal only at X = 0, P = 1, and otherwise A, < A,. 

When 7 = 1 ,  since A, < - 1,  it is clear that the corresponding X in (3.14) is 
negative, and by setting 7, = 1 -p,  lpl 4 1 ,  we find that A, = ~1 ++p so that the 
corresponding X is also negative in the limit Bz+ 1.  If however y2 < 1 whether the 
X values corresponding to A, and/or A, are positive or negative depends on whether 
X 2 + T 2  @ 1 as we now show. 

- 
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To demonstrate this we denote the left-hand side of (3.7) by E(A) and assume that 
y2 < 1 and X2 > 0. Then E(0) > 0, E(-oo) > 0 and E ( - 1 )  = (l-Tz)(l-p-XZ). 
- 

Also if 

so that A is the root of the quadratic in the numerator of (3.14) which has A2 > p 
for T2 < 1 ,  then E(A)  = X 2 ( p  - A,)  < 0. Suppose first that Xz +F > 1. Then, since 
E ( - 1 )  < 0 and E(A)  < 0, it follows that 0 > A ,  > A > -1 and A, < -1. Thus for 
A,, X is immediately negative, and the result is also true for A, upon noting that 
2Ai+A,-F < 0, since A, > A. 

Now suppose that X 2 + F  < 1. Then E ( - 1 )  > 0 ,  E(-co) > 0 thus 
0 > A, > A > A, > - 1, and in (3.14) X is negative for A, but positive for A,. Thus 
the root A, leads to inertial waves in front of the obstacle inside the region XZ +p = 1, 
which would otherwise trail behind X = 0 as the familiar lee waves. 
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